曾经人工智能只能在科幻小说作家和编剧的作品中出现,而现在人工智能正稳步踏入现实。近,我们看到人工智能在与人类的竞争中越发脱颖而出,从比专家更强的阅读能力,到在扑克锦标赛上取得胜利,人工智能正不断的战胜人类。
但是,似乎所有人都在加入人工智能潮流,我们想知道这项技术到底有多先进。Cortica是一家依赖人工智能技术发展的形象识别公司,我们向Cortica的创始人Igal Raichelgauz提出了一个问题:为什么人工智能仍然是一个愚蠢的东西?
以下是他的回答。
人工智能一直缺乏足够的智能,因为它获取信息的能力并没有现实环境的限制。人类智力受到我们的生理条件和我们自然进化过程的限制,但人工智能在理论上可以继续发展和智力,而不受外界条件的限制。人工智能“智能”真正局限性在于我们的能力。尽管如此,人工智能现在可以完成多项事务的能力,远不及人类和其他生物有机体的能力。
例如,尽管在过去五年中深度学习已经取得了显著的进步,但这些技术完全没有达到一个真正的人对图像的理解能力。人工智能系统也会产生一些错误的判断,它们无法理解上下文信息,有时也会忽略一些微小的细节。当然,也有一些方面,比如数字计算、下围棋等,如今的人工智能已经超过了人类的能力。但事实仍然是,人工智能仍然无法完成人类琐碎的任务,那就是与现实互动,感知自然信号。这表明人工智能系统不过是比较强大的计算机罢了,它的名字是个具有误导性的头衔。
对于人工智能来说,要想达到人类智能的高度,重要的是要在人类几千年来一直擅长的事情中脱颖而出。因此,在这个超越过程中,视觉理解和智能导航能力的比玩扑克更合适。在这类自然任务中,将人类智力与人工智能相匹配,将使人工智能无限接近我们的智慧。
要理解这一里程碑式的鸿沟,我们必须深入研究生物系统与深度学习技术之间的差异。
机器学习人工智能的创造者夸口说,机器可以自己学习和处理数据。但实际上,机器学习技术遵循的是一种自上而下的方法,是不允许他们自行做某事的。
在自上向下的体系结构中,人工智能首先要系统接受培训,即它的算法被开发出来,并显示出巨大的相关数据集。只有这样,才能将这些知识应用到新数据中。深度学习系统被贴上训练数据的标签,直到他们能够成功地输出新数据。机器只有在成功推断出问题的正确答案时,才会得到停止的指令。深度学习机器是利用许多层次的算法来构建的,这些算法利用许多抽象层次来处理数据。这些自上而下的系统已经取得了巨大的成就,但是它们对训练的依赖使它们变成复杂的机器,而不是智能的机器。
机器模仿
人类大部分学习都是在没有监督的情况下进行的。从他们出生的那天起,孩子们就会不断吸收他们所接触到的大量信息,并学会理解这个,进而能够知道如何驾驭这个。要拥有与人类相匹敌的智力,机器必须模仿人类自下而上的学习和理解的方式。如果没有训练、参数或数据集,它们的算法和结构将能够引入数据,处理数据,并通过自己的方式来理解它。按照逻辑学习模式,智能机器是能够进行理解和学习的,它们可以通过归纳、结合语境和利用自己的创造力来学习。
在合作创立Cortica之前,我曾加入以色列理工学院的一支神经学家和工程师团队,目的是了解大脑皮层如何运作,并设计出一种可以模仿这一过程的机器。尽管我们在如此复杂的问题上投入大量的计算能力,但限制我们系统层数的决定,在构建无人监督的学习和计算机视觉AI方面取得了成功。
如今,Cortica的系统可以在自己的内部区分不同的信息,并创造出相似的数据,然后用网络上已经存在的信息来给它们贴上标签。真正的智能技术的出现,将从根本上改善我们推动一些重要的技术创新的方式,并使我们能够利用看似无穷无尽的视觉数据。
如果人工智能的发展是模仿人类的过程,那么它的确可以超越人类的智力。我们没有理由限制更先进的人工智能的发展,但我们必须给它树立一个正确的框架。
邮箱:15236061639@163.com
QQ:60298351
微信:a18137798589
“大促狂欢启幕:物流企业如何高效管理仓储运营?” 大促如何打造高效仓库?电商大促期间爆仓、发货慢、错
“本文将介绍如何运用一物一码技术实现产品二维码防伪防窜货的管理方案。” 二维码物流防窜货管理方案现在
2024年度中国软件高质量发展前百家企业01软件前百家企业整体发展情况分析地域分布软件前百家企业主要